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Figure 1. Point cloud data is inherently unstructured and requires a rotation-invariant representation for human-like cognition in machines.
Our proposed method, IPD-Net, is a SO(3) invariant framework for decomposition of a point cloud, ensuring robustness to rotations
as represented in the latent space. This figure illustrates the need for SO(3) invariant representation and highlights the effectiveness of
IPD-Net in achieving rotation-invariant decomposition.

Abstract

In this paper, we propose IPD-Net: Invariant Primi-
tive Decompositional Network, a SO(3) invariant frame-
work for decomposition of a point cloud. The human cog-
nitive system is able to identify and interpret familiar ob-
jects regardless of their orientation and abstraction. Re-
cent research aims to bring this capability to machines for
understanding the 3D world. In this work, we present a
framework inspired by human cognition to decompose point
clouds into four primitive 3D shapes (plane, cylinder, cone,
and sphere) and enable machines to understand the objects
irrespective of its orientations. We employ Implicit Invari-
ant Features (IIF) to learn local geometric relations by im-
plicitly representing the point cloud with enhanced geomet-
ric information invariant towards SO(3) rotations. We also
use Spatial Rectification Unit (SRU) to extract invariant
global signatures. We demonstrate the results of our pro-
posed methodology for SO(3) invariant decomposition on
TraceParts Dataset, and show the generalizability of pro-
posed IPD-Net as plugin for downstream task on classifica-
tion of point clouds. We compare the results of classification

with state-of-the-art methods on benchmark dataset (Mod-
elNet40).

1. Introduction

In this paper, we propose IPD-Net: a SO(3) Invariant
Framework for understanding the primitive geometry of a
3D point cloud as shown in Figure 1. In recent years,
3D point cloud have begin to play an important role in
real world application including SLAM [26] [14], Meta-
Verse, digitization of heritage sites towards presentation in
AR/VR/XR/MR [28] [37] [42] [39], self driving assistance.
Towards understanding of point clouds, there is need for an
efficient model to analysis the underlying geometry of the
point cloud. Large research efforts have been done on solv-
ing 3D vision problems with point cloud rather than vox-
els [52] and multi-view images [41] because of their limi-
tations such as memory footprint. Point clouds are unstruc-
tured and unordered in nature making it difficult to analysis
the object. Unlike images, which have a defined grid, 3D
points clouds are unstructured and unordered making the
process difficult through deep learning where we cannot use



naive convolution networks. To address this, authors in [33]
proposes to use shared-mlp to handle permutation invari-
ance, but each points are processed individually. For un-
derstanding the local information, authors in [34] [45] uses
nearest neighbours to understand the local information and
global information as a hierarchical local features.

The aforementioned methods fail to extract geometrical
information from a complex point cloud as these method are
designed to extract semantically similar features. Human’s
cognitive system understand complex objects around us by
breaking them down into simple atomic elements or primi-
tives, these primitives can be a higher level interpretable ab-
straction. Many of downstream task such as point cloud reg-
istration [46] and 3D shape retrieval methods [23] often rely
on extracting geometric features like keypoints, descriptors,
and geometric relationships between points. These features
can then be used to match and compare 3D shapes for var-
ious applications such as object recognition [16], pose esti-
mation [15], and 3D reconstruction [25].

Exploration towards different primitives like 3D polyhe-
dral shapes [36], generalised cylinders [4], aeons [34], and
superquadrics [29] have been done previously where [30],
[31] uses cuboidal and superquadratics for 3D shape pars-
ing. Author in [6] uses primitives like squares, circles tri-
angles from from simple hand written drawing are used for
graphic programme synthesis. RANSAC [8] and its vari-
ants [44] [24] [27] [10] [11] use the christoffel symbols
and classical methodology for the decomposition into basic
shapes. The main challenge in these method is considera-
tion of prominent features towards decomposition.

To address this, many works have emerged by fitting the
point cloud using parametric features and shape fitting [20]
[40]. Alternative works decomposes point cloud into basic
primitive shapes (plane, cylindrical, cone, and spherical).
Each and every geometric shape can be derived from ba-
sic primitive shapes. Intuitively extraction of basic primi-
tive features is as good as understanding the morphology of
the point cloud, facilitating better representation, general-
izability, robustness, scalability, and explainability of point
cloud deep neural representation. Towards this, authors in
ABD-Net [17] and PointDCCNet [18] propose a method-
ology in which they split the end-to-end point cloud down
stream task into point cloud decomposition followed with a
point cloud downstream task. Although the superior perfor-
mance on decomposition task, these methods are suscepti-
ble to rotations of the point cloud. Human cognition is able
to interpret and identify familiar objects with any orienta-
tion and at any form of abstraction [3] [2]. The idea is to
analyse, how human perception decomposes any complex
object into primitives and is invariant in nature.

Inspired by the analysis of human cognition, in this work
we propose “IPD-Net”, which takes in the raw point cloud
with Euclidean positions as input and provides an invari-

ant primitive representation. In this work, we represent
the point cloud into its primitive shapes, which are planar,
cylindrical, conical, and planar. IPD-Net additionally pro-
vides an implicit invariant representation, avoiding the need
to make the model robust towards rotation with augmenta-
tion in the training pipeline. The invariant primitive decom-
position of the point cloud with IPD-Net can be used for
downstream tasks like classification, segmentation, point
cloud completion.

We summarize our contribution as follows:

• We propose IPD-Net: Invariant Primitive Decomposi-
tional Network for SO(3) invariant primitive represen-
tation of 3D point cloud.

– We propose to extract Implicit Invariant Features
(IIF) towards achieving invariance in decomposi-
tion using centric distance field and normals.

– We propose to extract global signature of the
point cloud through Spatial Rectification Unit
(SRU) using canonical representation for rotation
invariant signature.

• We demonstrate the results of our proposed methodol-
ogy for SO(3) invariant decomposition on TraceParts
Dataset, and compare with state-of-the-art methods.

• We show the generalizability of proposed IPD-Net as
plugin for classification of point clouds on benchmark
dataset (ModelNet40), and compare with state-of-the-
art methods.

In Section 2, we discuss the proposed architecture for
extraction of Invariant features towards decomposition of
point clouds. We discuss the results and effect of extracted
SO(3) invariant features on decomposition and 3D object
classification in Section 3 and conclude in Section 4.

2. IPD-Net: SO(3) Invariant Primitive Decom-
position Network

We propose IPD-Net: an Invariant Primitive Decomposi-
tion Net for SO(3) equivariant point cloud representations.
Unlike previous methods, we propose to employ rotation in-
variant centric distance fields along with per-point normals.
We achieve SO(3) equivariant decompositions via Topo-
logical Invariant features and canonical representations of
proposed centric-distance fields. Towards extracting these
feature we propose Implicit Invariant Features (IIF) and
Spatial Rectifier Unit (SRU). We fuse the canonical and
topological invariant to get higher dimensional representa-
tions and project them to 4 primitive shapes probabilities
using Shared-MLPs.



Figure 2. Our architecture takes in point cloud with normals into IGE:Invariant geometric extractor. The IIP: Implicit invariant Projector
takes in point and normals to give Invariant Implicit Features (IIF) with which invariant local features using edge conv we do maxpool at
K to get per-point feature vector of 64 dimension. The SRU:special Rectifier Unit gives the Canonical representation of to extract global
signature consistent with rotations. we concatenate this global relations with every local feature space.Finally with we use shared MLP’s
to decompose the point cloud into primitives using both local and global features.

2.1. Problem Statement

Let point cloud P = {p1, p2, ..., pn} where n represents
point density of a given point cloud and pi ∈ R6 containing
coordinates (x, y, z) and per-point normals (nx, ny, nz).
We propose IPD-Net as a decomposition function fθ param-
eterized by weights θ such that it yield a per-point primitive
probability distribution Q = {q1, q2, ..., qn} belongs to four
categories.

We model gϕ as per-point invariant feature transformer
gϕ(RP ) = gϕ(P ) where R is 3D rotation matrix, mak-
ing IPD-Net an invariant decomposer and gϕ ∪ hζ = fθ as
shown in Figure 2.

2.2. Invariant Geometry Extractor (IGE)

Invariant Geometry Extractor block contains Spatial
Rectification Unit (SRU) and Implicit Invariant Projector
(IIP) modules used to extract SO(3) invariant features im-
plicitly for both global signature and local neighbourhood
geometry.
Implicit Invariant Projector (IIP) is the module we use
to convert euclidian position into a 6-dimensional vector to-
wards SO(3) invariant features. we modeled an extended
daboux frame work to address two crucial challenges in
LGR-Net [51]: 1) computation efficiency, and 2) ambigu-
ity with-respect-to the orientation of local topology. We in-
troduce a novel Moment Relativity Field denoted by Ψ =
µ − P , where µ represents the moment or centroid of the
point cloud coordinates P . ∥Ψ∥ being a scalar descriptor fa-
cilities in understanding the underlying relative typologies
of point cloud with-respect-to to centroid. Furthermore, we
simplify this descriptor by computing the centroid of the en-
tire point cloud over the centroid of the local group (k-NN)
while reducing both computation and memory footprint. By

Figure 3. Implicit Invariant Projector takes in the point cloud with
normal extracting centroid point, Centroid Normal, Moment Rela-
tivity field and point normal to implicitly represent the point cloud
using rotation invariant features in a 6-dimensional space called
invariant implicit features with which local feature learning takes
place.

leveraging the aforementioned descriptor, we derive novel
Implicit Invariant Features F to incorporate a range of fac-
tors given by,

F =
[
∥Ψ∥ ,Ψ ·N,Ψ ·Nµ, N ·Nµ,

u(N) · u(Nµ), v(N) · v(Nµ)
] (1)

Here, u(x) = Ψ × x, v(x) = u(x) × x represent the
extended Darboux frame, and · refers to the angle given by
dot-product. N represents normals of point cloud P and
Nµ represents centroid of normals repeated n times.



Figure 4. We employ SRU to extract global signatures. We take
point cloud with Moment Relativity Field project the point cloud
into 4-dimensional canonical space. We achieve robustness in in-
variance by resolving sign ambiguity. Hence, consistent global
signatures irrespective of rotations.

Spatial Rectification Unit (SRU) transforms given set of
co-ordinates (x, y, z) to its canonical representation as show
in Figure 4. Although implicit invariant features are invari-
ant to rotation, they lack spatial information necessary for
downstream tasks like segmentation, upsampling, and re-
construction. Therefore we extract global geometric signa-
ture of point cloud using canonical representation. Towards
this we employ Singular Value Decomposition (SVD) [12]
on point cloud point cloud P = {p1, p2, ..., pn} containing
(x, y, z) along with our Moment-Relativity Field ∥Ψ∥ con-
taining geometric descriptions (aiding in better geometric
signature) as an additional feature giving us H=[P, ∥Ψ∥],

H = USV T (2)

where, the orthogonal matrix V T ∈ R4. With the the
spatial information and distance value for each instance
present the orthogonal matrix projects the point cloud into
4-dimensional canonical space where point cloud is aligned
uniquely according to its geometry regardless of its initial
pose. Thus, helping us in obtaining consistent global signa-
tures.

The rectification through the rotation matrix may contain
sign ambiguity, like [9] we resolve the issue with by fixing
the sign ambiguity between U and V T by,

l = sgn(UT , ∥Ψ∥) (3)

and we apply signs from l to get,

V ′T = V TL (4)

where, L is the diagonal matrix with signs l and V ′T is ro-
tation with no sign ambiguity present.

Improved Implicit Features(IIF) we make use of local
aggregators (EdgeConv) to extract local geometry. The per
point local features learnt are better as IIF inherits geometric

descriptors like Moment Relativity Field and normals and
since these features are implicitly invariant we conventional
feature extractors making it easier to improve with feature
learning methodologies.

The canonical representations derived using SRU are
used to extract global relation using shared MLP’s. We use
Moment Relative Field containing better geometric infor-
mation and get better and unique signatures with geometri-
cal changes. Both the features are concatenated and decom-
posed into primitive shapes.

3. Results and Discussions
In this section, we discuss about the dataset used for

training of our proposed method, experimental setup and
setting of proposed methodology, demonstrate the results of
our methodology and compare with state-of-the-art meth-
ods on decomposition and generalizability on classification
with z/z, z/SO(3), and SO(3)/SO(3).

3.1. Datasets

In this section, we discuss on the dataset used for bench-
marking of our proposed methodology on decomposition
using TraceParts dataset and on classification using Model-
Net40.

• TraceParts [38]: dataset consists of mechanical com-
ponent models along with primitive shapes informa-
tion labeled (planar, spherical, cylindrical and conical)
with 12984 training samples and 3173 testing samples.

• ModelNet40 [47]: dataset consists of CAD models be-
longing to 40 categories. These CAD models are sam-
pled to 1024 points to form a pointcloud with 9843
training samples and 2465 testing samples.

3.2. Experimental Setup

In this section, we discuss about the experimental setup
of proposed methodology for Invariant Decomposition and
Classification.

• Training Setup for IPD-Net
We consider learning rate of 0.001, batch size of 8, us-
ing Adam Optimizer and Negative Log likely-hood as
a loss function. We consider 1024 points during train-
ing using Random sampling. We use augmentation of
Random point dropping with 0.15 and random scale
with a scaling factor of 0.25. We train IPD-Net just for
50 epochs on TraceParts dataset with all the rotation
setups.

• Training Setup for SO(3) Invariant 3D Classifica-
tion Setup
We consider learning rate of 0.001, batch size of 32,
using SGD Optimizer with momentum of 0.9 and



Figure 5. Visualization of decomposition results on TraceParts dataset [38] using our proposed methodology IPD-Net. We infer that the
results of IPD-Net are consistent in decomposing all the four primitives shapes and are near to the ground truth. First row represents the
Ground truth and second row represents the decomposed outputs of IPD-Net.

Cross Entropy as a loss function. We consider 1024
points during training using Random sampling. We
use augmentation of Random point dropping with 0.15
and random scale with a scaling factor of 0.25. We
train the classification task for 250 epochs on Model-
Net40 dataset with all the rotation setups. We use IPD-
Net features to PointNet [33] and Point Cloud Trans-
former [13].

3.3. Results

In this section, we demonstrate the results of proposed
methodology on decomposition and classification and com-
pare it with state-of-the-art methods.

• Comparison of decomposition results with state-of-
the-art methods:
We have evaluated our proposed method for rotation-
invariant point cloud decomposition on the Traceparts
dataset, and the results are presented in Table 1. Our
method, IPD-Net, performs less effectively than ABD-
Net [17] in both the z/z and SO(3)/SO(3) decompo-
sition tasks. However, we contend that ABD-Net is not
invariant in the z/SO(3) setting, as evidenced by its
significant drop in performance of 59.99% from z/z to
z/SO(3) in mean Intersection over Union of Decom-
positions. On the other hand, IPD-Net exhibits stable
and robust performance, maintaining 0% decrease in
performance in the same setting.

• Qualitative Analysis of decomposition results with

Table 1. The decomposition accuracy of proposed methodology on
TraceParts dataset [38] in comparison with state-of-the-art method
ABD-Net [17]. We compare the results of IPD-net on different
settings of rotation z/z, z/SO(3), and SO(3)/SO(3). Here Bold
represents the best performance; ↑ represents higher is better and
↓ represents lower is better. mIoU refers to Mean of Intersection
over Union and sIoU refers to Standard deviation of Intersection
over Union.

z/z z/SO(3) SO(3)/SO(3)
mIoU ↑ sIoU ↓ mIoU ↑ sIoU ↓ mIoU ↑ sIoU ↓

ABD-Net [17](2021) 0.9552 0.0355 0.3607 0.1537 0.9216 0.0734
IPD-Net (Ours) 0.9028 0.1045 0.9028 0.1045 0.9028 0.1045

state-of-the-art methods:
To highlight the efficacy of our proposed method IPD-
Net, we show qualitative comparison of our decom-
positions against ABD-Net [17]. Figure 7 shows vi-
sual supremacy of IPD-Net over ABD-Net in all point
clouds across all SO(3) rotation as justified in Table 1.
Both model were trained for z/SO(3) setting, we vi-
sually depict and highlight some of the few limitation
of ABD-Net. When we randomly rotation excluding z
axis the input point cloud. ABD-Net fails in Identify-
ing screen of Laptop as ‘Planar’, body of airplane and
rocket as ‘Cylindrical’ as shown in highlighted regions
in Figure 7. Where as IPD-Net is robust in Identify-
ing screen of Laptop as Planar, body of airplane and
rocket as cylindrical. One potential reason to this may
be due to incorporation of our proposed implicit invari-
ant features. We also report that ABD-Net is robust to



Figure 6. Visualization of decomposition of varying points of point cloud using IPD-Net and ABD-Net [17]. Number of points varying
from 512, 1024, 2048, 8096. IPD-Net and ABD-Net [17] are trained on 1024 points. IPD-Net outperforms ABD-Net [17] in-terms to
robustness for density varying point clouds.

the rotations that is available during training (i.e, z-
axis) as depicted in highlighted region of Stool, where
it accurately identifies the cylindrical geometry which
is oriented with-respect-to z-axis.

Unlike ABD-Net [17] which is susceptible to new far-
thest point sampling pattern of point cloud that was not
available for training. The susceptiblity of ABDNet to-
wards surfacial pertubation is explored in Figure 6.

• Comparison of SO(3) invariant classification with
state-of-the-art methods: We have assessed the per-
formance of our proposed method, IPD-Net, as a plug-
in for rotation-invariant point cloud classification and
compared it with other state-of-the-art methods, as pre-
sented in Table 2. Our method serves as a plug-and-
play module for existing non-invariant methods, as
explained in Section 3.2. One of our IPD variants,
PCT [13], achieved the third-highest accuracy on the
ModelNet40 dataset [47] for the SO(3)-invariant point
cloud classification task, outperforming other rotation-
invariant methods.

4. Conclusions
In this paper, we have proposed IPD-Net: Invariant Prim-

itive Decompositional Network for SO(3) invariant prim-
itive representation of 3D point cloud. Towards this, we
have proposed to extract Implicit Invariant Features (IIF) to
achieve invariance in decomposition using Moment Rela-
tive Field and normals. Towards extracting canonical rep-
resentation for rotation invariant global signature of the

Table 2. The classification accuracy of proposed methodology
in comparison with state-of-the-art methods on ModelNet40 with
1024 point density. We plug our invariant features proposed
methodology with PointNet [33] and PCT [13]. We demon-
strate the classification results on different settings of rotation z/z,
z/SO(3), and SO(3)/SO(3). Highest values are represented in
Bold, second highest values are represented in Underline and the
third highest values are represented in Bold and Underlined for-
mat.

z/z z/SO(3) SO(3)/SO(3)
PointNet [33](2016) 85.9 19.6 74.7

PointNet++ [34](2017) 91.8 28.4 85.0
Spherical-CNN [7](2017) 88.9 76.7 86.9

PCNN [1](2018) 92.3 11.9 85.1
PointCNN [21](2018) 92.5 41.2 84.5

ShellNet [50](2019) 93.1 19.9 87.8
a3S-CNN [22](2019) 89.6 87.9 88.7

PCT [13](2021) 87.3 24.6 87.3
Robust Methods

TFN [43](2018) 88.5 85.3 87.6
SFCNN [35](2019) 91.4 84.8 90.1
RI-Conv [48](2019) 86.5 86.4 86.4
SPHNet [32](2019) 87.7 86.6 87.6

ClusterNet [5](2019) 87.1 87.1 87.1
GC-Conv [49](2020) 89.0 89.1 89.2
RI-GCN [19](2020) 91.0 91.0 91.0

LGR-Net [51](2022) 90.9 90.9 91.1
IPD+PointNet(Ours) 87.7 87.7 87.7

IPD+PCT(Ours) 89.3 89.3 89.3

point cloud, we have proposed Spatial Rectification Unit



Figure 7. Visual comparison between our proposed point cloud primitive decomposition method, IPD-Net, and the state-of-the-art method
ABD-Net [17] on four objects: Rocket, Laptop, Airplane, and Stool. Both models were trained for the z/SO(3) setting, and we highlight
some limitations of ABD-Net [17] when the input point cloud is randomly rotated excluding the z axis. Specifically, ABD-Net [17] fails
to identify the screen of the Laptop as Planar and the body of the Airplane and Rocket as Cylindrical, as shown in the highlighted regions.
In contrast, IPD-Net is robust in identifying these primitive shapes. We speculate that the incorporation of our proposed implicit invariant
features contributes to this robustness. Additionally, we report that ABD-Net [17] performs well when the objects are oriented with respect
to the z axis only, as evidenced by the accurate identification of the cylindrical geometry of the Stool in the highlighted region.

(SRU). We have demonstrated the results of our proposed
methodology for SO(3) invariant decomposition on Tra-
ceParts Dataset, and have compared the results of decom-
position with state-of-the-art methods. While our proposed
method may not outperform ABD-Net in certain decompo-
sition tasks, we have shown that ABD-Net is not invariant
in the z/SO(3) setting, resulting in a significant drop in
performance of 59.99% from z/z to z/SO(3) in mean In-
tersection over Union of Decompositions. In contrast, IPD-
Net maintains stable and robust performance in this setting,
with a 0% decrease in performance. We have shown the
generalizability of proposed IPD-Net as plugin for classifi-
cation of point clouds on benchmark dataset (ModelNet40),
and have compared with state-of-the-art methods.
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